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Abstract
The numbers game is a one-player game played on a finite simple graph with certain “am-

plitudes” assigned to its edges and with an initial assignment of real numbers to its nodes. The
moves of the game successively transform the numbers at the nodes using the amplitudes in a
certain way. This game and its interactions with Coxeter/Weyl group theory and Lie theory
have been studied by many authors. Following Eriksson, we allow the amplitudes on graph
edges to be certain real numbers. Games played on such graphs are “E-games.” We show that
for certain such three-node cyclic graphs, any numbers game will diverge when played from an
initial assignment of nonnegative real numbers not all zero. This result is a key step in a Dynkin
diagram classification (obtained elsewhere) of all E-game graphs which meet a certain finiteness
requirement.
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The numbers game is a one-player game played on a finite simple graph with weights (which
we call “amplitudes”) on its edges and with an initial assignment of real numbers to its nodes.
Each of the two edge amplitudes (one for each direction) will be certain negative real numbers.
The move a player can make is to “fire” one of the nodes with a positive number. This move
transforms the number at the fired node by changing its sign, and it also transforms the number
at each adjacent node in a certain way using an amplitude along the incident edge. The player
fires the nodes in some sequence of the player’s choosing, continuing until no node has a positive
number. This game was formulated by Mozes [Moz] for graphs with integer amplitudes. It has also
been studied by Proctor [Pro1], [Pro2], Björner [Björ], and Wildberger [Wil1], [Wil2], [Wil3]. The
game is the subject of §4.3 of the book [BB] by Björner and Brenti. The numbers game facilitates
computations with Coxeter groups and their geometric representations (e.g. see §4.3 of [BB]). See
[Don] for discussion of further connections and applications, where mainly we draw on Eriksson’s
ground-breaking work in [Erik1], [Erik2], and [Erik3].

Our purpose here is to show in Proposition 1 that certain three-node cyclic “E-GCM graphs”
(see [Don] for a definition) are not “admissible”: that is, any numbers game played on such a
graph from a nontrivial initial assignment of nonnegative numbers will not terminate. Our main
interest in this proposition is that it furnishes a key step for the proof given in [Don] of the following
Dynkin diagram classification result: A connected E-GCM graph has a nontrivial initial assignment
of nonnegative numbers such that the numbers game terminates in a finite number of steps if and
only if it is a connected “E-Coxeter graph” corresponding to an irreducible finite Coxeter group.
(Another proof of this classification result is given in [DE].) All further motivation, definitions,
and preliminary results needed to understand the statement and proof of Proposition 1 are given
in [Don].

Proposition 1 Suppose (Γ,M) is the following three-node E-GCM graph: s
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that all node pairs are odd-neighborly. Then (Γ,M) is not admissible.
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Proof. The proof is somewhat tedious. With amplitudes as depicted in the proposition statement,

assign numbers a, b, and c as follows: s
s
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Call this position λ = (a, b, c), so a is the

number at node γ1, b is at node γ2, and c is at node γ3. Without loss of generality, assume that
pq ≤ p1q1 and that pq ≤ p2q2. Set

κ1 :=
pp2 + p1

√
pq

√
pq(2−√

pq)
and κ2 :=

qp1 + p2
√

pq
√

pq(2−√
pq)

.

Assume that a ≥ 0, b ≥ 0, c ≤ 0, and that
(

κ1 −
p

q2
√

pq

)
a +

(
κ2 −

q

q1
√

pq

)
b + c > 0. These

hypotheses will be referred to as condition (*). Notice that a and b cannot both be zero under
condition (*). A justification of the following claim will be given at the end of the proof:

Claim: Under condition (*) there is a sequence of legal node firings from initial position λ = (a, b, c)
which results in the position λ′ = (a′, b′, c′) = ( −q√

pq b, −p√
pqa, κ1a + κ2b + c).

In this case, observe that a′ ≤ 0, b′ ≤ 0, and c′ > 0. Now fire at node γ3 to obtain the position
λ(1) = (a1, b1, c1) with a1 = q1[κ1a + (κ2 − q

q1
√

pq )b + c], b1 = q2[(κ1 − p
q2
√

pq )a + κ2b + c], and
c1 = −(κ1a + κ2b + c). Now condition (*) implies that a1 > 0, b1 > 0, and c1 < 0. At this point to

see that λ(1) = (a1, b1, c1) itself meets condition (*), we only need to show that
(

κ1 −
p

q2
√

pq

)
a1 +(

κ2 −
q

q1
√

pq

)
b1 + c1 > 0. As a first step, we argue that (i) q1(κ1 − p

q2
√

pq ) ≥ 1 and that (ii)

q2(κ2 − q
q1
√

pq ) ≥ 1. We only show (i) since (ii) follows by similar reasoning. (From the inequalities
(i) and (ii), a third inequality (iii) follows immediately: q1(κ1 − p

q2
√

pq ) + q2(κ2 − q
q1
√

pq )− 1 > 0.)
For the first of the inequalities (i), note that since 1 ≤ pq, then 2 − √

pq ≤ pq. Since pq ≤ p2q2,
then 2−√

pq ≤ p2q2. (Similarly 2−√
pq ≤ p1q1.) Thus p2q2

2−√pq − 1 ≥ 0, and hence p2

2−√pq −
1
q2
≥ 0.

Therefore, q1pp2√
pq(2−√pq) −

q1p
q2
√

pq ≥ 0. Since p1q1
√

pq√
pq(2−√pq) ≥ 1, then q1pp2√

pq(2−√pq) + p1q1
√

pq√
pq(2−√pq) −

q1p
q2
√

pq ≥ 1.
From this we get q1(κ1 − p

q2
√

pq ) ≥ 1, which is (i). The following identity is easy to verify:

(
κ1 −

p

q2
√

pq

)
a1 +

(
κ2 −

q

q1
√

pq

)
b1 + c1

=
(

κ1 −
p

q2
√

pq

) [
q1

(
κ1 −

p

q2
√

pq

)
+ q2

(
κ2 −

q

q1
√

pq

)
− 1

]
a1

+
(

κ2 −
q

q1
√

pq

) [
q1

(
κ1 −

p

q2
√

pq

)
+ q2

(
κ2 −

q

q1
√

pq

)
− 1

]
b1

+
[
q1

(
κ1 −

p

q2
√

pq

)
+ q2

(
κ2 −

q

q1
√

pq

)
− 1

]
c1

+
p

q2
√

pq

[
q1

(
κ1 −

p

q2
√

pq

)
− 1

]
a1 +

q

q1
√

pq

[
q2

(
κ2 −

q

q1
√

pq

)
− 1

]
b1

Now the inequalities (i), (ii), and (iii) of the previous paragraph together with the inequality(
κ1 −

p

q2
√

pq

)
a +

(
κ2 −

q

q1
√

pq

)
b + c > 0 from condition (*) imply that

(
κ1 −

p

q2
√

pq

)
a1 +

2



(
κ2 −

q

q1
√

pq

)
b1 + c1 > 0, as desired. This means that position λ(1) = (a1, b1, c1) meets condition

(*) and none of its numbers are zero. In view of our Claim, we may apply to position λ(1) a legal
sequence of node firings followed by firing node γ3 as before to obtain a position λ(2) = (a2, b2, c2)
that meets condition (*) with none of its numbers zero, etc. So from any such λ = (a, b, c) we
have a divergent game sequence. In view of inequalities (i) and (ii), the fundamental positions
ω1 = (1, 0, 0) and ω2 = (0, 1, 0) meet condition (*). The fundamental position ω3 = (0, 0, 1) does
not meet condition (*). However, by firing at node γ3 we obtain the position (q1, q2,−1), which
meets condition (*) by inequality (iii). Thus from any fundamental position there is a divergent
game sequence, and so by Lemma 2.5 of [Don] the three-node E-GCM graph we started with is not
admissible.

To complete the proof we must justify our Claim. Beginning with position λ = (a, b, c) under
condition (*), we propose to fire at nodes γ1 and γ2 in alternating order until this is no longer
possible. We assert that the resulting position will be λ′ = (a′, b′, c′) = ( −q√

pq b, −p√
pqa, κ1a + κ2b + c).

There are three cases to consider: (I), a and b are both positive, (II), a > 0 and b = 0, and (III),
a = 0 and b > 0. For (I), we wish to show that (γ1, γ2, . . . , γ1) of length m12 is a sequence of legal
node firings. That is, we must check that

〈(s2s1)k.λ, α1〉 = 〈λ, (s1s2)k.α1〉 > 0 for 0 ≤ k ≤ (m12 − 1)/2, and(1)

〈s1(s2s1)k.λ, α2〉 = 〈λ, s1(s2s1)k.α2〉 > 0 for 0 ≤ k < (m12 − 1)/2(2)

For (II), we wish to show that (γ1, γ2, . . . , γ1, γ2) of length m12−1 is a sequence of legal node firings.
That is, we must check that

〈(s2s1)k.λ, α1〉 = 〈λ, (s1s2)k.α1〉 > 0 for 0 ≤ k < (m12 − 1)/2, and(3)

〈s1(s2s1)k.λ, α2〉 = 〈λ, s1(s2s1)k.α2〉 > 0 for 0 ≤ k < (m12 − 1)/2(4)

For (III), we wish to show that (γ2, γ1, . . . , γ2, γ1) of length m12 − 1 is a sequence of legal node
firings. That is, we must check that

〈(s1s2)k.λ, α2〉 = 〈λ, (s2s1)k.α2〉 > 0 for 0 ≤ k < (m12 − 1)/2, and(5)

〈s2(s1s2)k.λ, α1〉 = 〈λ, s2(s1s2)k.α1〉 > 0 for 0 ≤ k < (m12 − 1)/2(6)

To address (1) through (6), we consider matrix representations for each Si := σM (si) (where
i = 1, 2, 3) under the representation σM . With respect to the ordered basis B = (α1, α2, α3) for V

we have X1 := [S1]B =

 −1 p p1

0 1 0
0 0 1

 and X2 := [S2]B =

 1 0 0
q −1 p2

0 0 1

, and so

X1,2 := [S1S2]B = X1X2 =

 pq − 1 −p p2p + p1

q −1 p2

0 0 1


and

X2,1 := [S2S1]B = X2X1 =

 −1 p p1

−q pq − 1 p1q + p2

0 0 1

 .
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For (1) through (6) above, we need to understand Xk
1,2

0@ 1
0
0

1A, X2X
k
1,2

0@ 1
0
0

1A, Xk
2,1

0@ 0
1
0

1A, and

X1X
k
2,1

0@ 0
1
0

1A. Set θ := π/m12. Then we can write X1,2 = PDP−1 for nonsingular P and diagonal

matrix D as in

1
q(e2iθ − e−2iθ)

 e2iθ + 1 e−2iθ + 1 p2p + 2p1

q q p1q + 2p2

0 0 4− pq


 e2iθ 0 0

0 e−2iθ 0
0 0 1


 q −e−2iθ − 1 C1

−q e2iθ + 1 C2

0 0 C3


where C1 = [−q(p2p + 2p1) + (e−2iθ + 1)(p1q + 2p2)]/(4− pq), C2 = [q(p2p + 2p1)− (e2iθ + 1)(p1q +
2p2)]/(4 − pq), and C3 = q(e2iθ − e−2iθ)/(4 − pq). With some work we can calculate Xk

1,2, which
results in

Xk
1,2 =


sin(2(k+1)θ)+sin(2kθ)

sin(2θ)
−p sin(2kθ)

sin(2θ) C ′
1

q sin(2kθ)
sin(2θ)

− sin(2kθ)−sin(2(k−1)θ)
sin(2θ) C ′

2

0 0 1

 ,

with

C ′
1 = −p2p + 2p1

4− pq

[
sin(2(k + 1)θ) + sin(2kθ)

sin(2θ)
− 1

]
+

p(p1q + 2p2) sin(2kθ)
(4− pq) sin(2θ)

and

C ′
2 = −q(p2p + 2p1) sin(2kθ)

(4− pq) sin(2θ)
+

p1q + 2p2

4− pq

[
sin(2kθ) + sin(2(k − 1)θ)

sin(2θ)
+ 1

]
.

Similar reasoning (or simply interchanging the roles of α1 and α2 in the preceding calculations, or
noting that Xk

2,1 = (X−1
1,2 )k = X−k

1,2 ) shows that

Xk
2,1 =


− sin(2kθ)−sin(2(k−1)θ)

sin(2θ)
p sin(2kθ)
sin(2θ) C ′′

1
−q sin(2kθ)

sin(2θ)
sin(2(k+1)θ)+sin(2kθ)

sin(2θ) C ′′
2

0 0 1

 ,

with

C ′′
1 =

p2p + 2p1

4− pq

[
sin(2kθ) + sin(2(k − 1)θ)

sin(2θ)
+ 1

]
− p(p1q + 2p2) sin(2kθ)

(4− pq) sin(2θ)

and

C ′′
2 =

q(p2p + 2p1) sin(2kθ)
(4− pq) sin(2θ)

− p1q + 2p2

4− pq

[
sin(2(k + 1)θ) + sin(2kθ)

sin(2θ)
− 1

]
.

Then

X2X
k
1,2 =


sin(2(k+1)θ)+sin(2kθ)

sin(2θ)
−p sin(2kθ)

sin(2θ) C ′
1

q sin(2(k+1)θ)
sin(2θ)

(1−pq) sin(2kθ)+sin(2(k−1)θ)
sin(2θ) qC ′

1 − C ′
2 + p2

0 0 1


and

X1X
k
2,1 =


(1−pq) sin(2kθ)+sin(2(k−1)θ)

sin(2θ)
p sin(2(k+1)θ)

sin(2θ) −C ′′
1 + pC ′′

2 + p1

−q sin(2kθ)
sin(2θ)

sin(2(k+1)θ)+sin(2kθ)
sin(2θ) C ′′

2

0 0 1

 .
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Now we can justify (1) through (6). For example, for (4) we see that since X1X
k
2,1

0@ 0
1
0

1A is the

second column of the matrix X1X
k
2,1, then 〈λ, s1(s2s1)k.α2〉 = ap sin(2(k+1)θ)

sin(2θ) , which is positive since
a > 0, p > 0, and (recalling that m12 is odd) 2(k + 1) < m12.

Then the proposed firing sequence for each of cases (I), (II), and (III) is legal. To see in case (I)
that the resulting position is the claimed λ′ = (a′, b′, c′) = ( −q√

pq b, −p√
pqa, κ1a + κ2b + c), we need to

calculate 〈s1(s2s1)k.λ, αi〉 = 〈λ, s1(s2s1)k.αi〉 for each of i = 1, 2, 3, where k is now (m12 − 1)/2.
With patience one can confirm that

X1X
k
2,1 =

 0 −p/
√

pq κ1

−q/
√

pq 0 κ2

0 0 1

 ,

from which the claim follows. Similar computations confirm the claim for cases (II) and (III).
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