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The Original Secret Santa Problem

The Original Secret Santa Problem Suppose n people attend a party. Each guest brings a
gift. The gifts are placed in a bin. Each guest blindly picks one gift from the bin. What is
the probability that no guest takes home the gift that he/she brought to the party?

Example If there are 9 guests at the party, a way to depict one possible scenario is as a permu-
tation on the set {1, 2, . . . , 9}:

σ =
(

1 2 3 4 5 6 7 8 9
1 2 6 4 5 9 7 8 3

)
←− Person

←− Gift he/she takes

A mathematical interpretation of Secret Santa The question essentially asks for the pro-
portion of permutations on the set {1, 2, . . . , n} that are derangements, i.e. permutations
with no fixed points. (The permutation in our example has six fixed points.)

Set-up for our solution

Sn
(def)
:== the permuations on {1, . . . , n}

Then |Sn| == n!

Dn
(def)
:== the set of all derangements on {1, . . . , n}

Then
|Dn|
n!

== proportion of permutations on {1, . . . , } that are derangements

Fix(p1, p2, . . . , pk)
(def)
:== the set of permutations in Sn that fix p1, p2, . . . , pk

IMPORTANT NOTE: Fix(2, 4, 5, 7, 8) ⊂ Fix(2, 4, 7) ⊂ Fix(2, 7)

A “sloppy” way to count |Dn|

|Dn| == |Sn| −



|Fix(1)|
+

|Fix(2)|
+
...
+

|Fix(n)|


+



|Fix(1, 2)|
+

|Fix(1, 3)|
+
...
+

|Fix(n− 1, n)|


−



|Fix(1, 2, 3)|
+

|Fix(1, 2, 4)|
+
...
+

|Fix(n− 2, n− 1, n)|


+ · · ·(*)

The assertion of this identity is justified by the Claim below. Apparently many fixed
point permutations will be thrown out multiple times and added back multiple times to
the count on the right hand side.

Claim On the right hand side of (*), the net result is that each fixed point permutation is thrown

out exactly once.
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Original Secret Santa, continued

Proof of Claim. Consider a permutation σ which has exactly k fixed points.

Example The permutation σ =
(

1 2 3 4 5 6 7 8 9
1 2 6 4 5 9 7 8 3

)
has k = 6 fixed points

Thrown out
(
6
1

)
times: −

(
6
1

)
−6

Added back
(
6
2

)
times: +

(
6
2

)
+15

Thrown out
(
6
3

)
times: −

(
6
3

)
−20

Added back
(
6
4

)
times: +

(
6
4

)
+15

Thrown out
(
6
5

)
times: −

(
6
5

)
−6

Added back
(
6
6

)
times: +

(
6
6

)
+1

−1

In general, here’s how often σ is thrown out and added back in our calculation (*):

−
(

k

1

)
+

(
k

2

)
−

(
k

3

)
+ · · ·+ (−1)k

(
k

k

)
But, we have the following identity involving alternating sums of binomial coefficients (why?):(

k

0

)
−

(
k

1

)
+

(
k

2

)
−

(
k

3

)
+ · · ·+ (−1)k

(
k

k

)
= 0

And so

−
(

k

1

)
+

(
k

2

)
−

(
k

3

)
+ · · ·+ (−1)k

(
k

k

)
= −1

Conclusion: The proportion of derangements is (approximately)
1
e

(!!!)

|Dn| = n!−
(

n

1

)
(n− 1)! +

(
n

2

)
(n− 2)!−

(
n

3

)
(n− 3)! + · · ·+ (−1)n

(
n

n

)
(n− n)!

=
n∑

k=0

(
n

k

)
(−1)k (n− k)!

|Dn|
n!

=
n∑

k=0

1
n!

n!
k! (n− k)!

(−1)k (n− k)!

=
n∑

k=0

(−1)k

k!

= 1− 1
1!

+
1
2!
− 1

3!
+ · · ·+ (−1)n 1

n!

≈ 1
e
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A Generalized Secret Santa Problem

Motivating our generalization Recently Wayne Bell passed along to me the following question
of Mark Galloway: Shuffle a deck of 52 cards, and then lay them down in a row. What are
the chances that you will have an “Ace” among the first four cards, a “2” among the next
four cards, etc, or a “King” among the last four cards?∗

It will be easier to address the negative version of this question: What are the chances that
you not will have an “Ace” among the first four cards, a “2” among the next four cards, etc,
or a “King” among the last four cards?

A Mathematical Reformulation Fix positive integers a and b and set n := ab. In what
follows, a will play the role of the suits (so a = 4 in the motivating question) and b will play
the role of the denominations of the cards (so b = 13 in the motivating question).

a-block For 1 ≤ k ≤ b, the kth a-block of {1, . . . , n} is the set Bk := {(k − 1)a + 1, .., ka}.

a-derangement An a-derangement of {1, . . . , n} is a permutation σ in Sn such that for all
i ∈ {1, . . . , n}, the element σ(i) is not in the same a-block of {1, . . . , n} as the element i.

Dn,a We let Dn,a denote the set of all a-derangements of {1, . . . , n}.

a-fixed element If σ(i) is in the the same a-block as i, then we say i is an a-fixed element
for the permutation σ, and we say σ a-fixes the element i.

Fixa(p1, . . . , pr) We let Fixa(p1, . . . , pr) denote the set of all permutations in Sn that a-fix
elements p1, . . . , pr.

So we seek to count the number |Dn,a| of a-derangements of {1, . . . , n} and also determine
what proportion of all permutations on the set {1, 2, . . . , n} are a-derangements.

As before, a “sloppy” way to count |Dn,a|

|Dn,a| == |Sn| −



|Fixa(1)|
+

|Fixa(2)|
+
...
+

|Fixa(n)|


+



|Fixa(1, 2)|
+

|Fixa(1, 3)|
+
...
+

|Fixa(n− 1, n)|


−



|Fixa(1, 2, 3)|
+

|Fixa(1, 2, 4)|
+
...
+

|Fixa(n− 2, n− 1, n)|


+ · · ·(**)

Proof. As before, on the right hand side of (**), the net result is that each a-fixed point permutation
is thrown out exactly once.

∗ Actually Wayne and Mark asked about having an “Ace” in the 1st, 14th, 27th, or 40th position, or a “2” in the 2nd,

15th, 28th, or 41st position, etc. But it is clear that there is a one-to-one correspondence between such permutations

and permutations satisfying this requirement of an “Ace” among the first four cards etc.

3



Secret Santa, Generalized

May 17, 2006

Generalized Secret Santa, continued

What do we do now? So far the set-up is the same as before. In working with the right-hand
side of (**), it is clear that we need to understand the quantity∑

subsets {p1, . . . , pk}
of {1, . . . , n}

|Fixa(p1, . . . , pk)|

Compositions A composition of a positive integer k is a sequence of positive integers whose sum
is k. If c = (c1, . . . , ci) is a composition of k, then we say c has i parts. We let C(k, i, a)
denote the compositions of k with i parts and with each part no larger than a.

In what follows, the quantity (s)t := s(s− 1)(s− 2) · · · (s− t + 1) when t is a positive integer.

Proposition
∑

subsets {p1, . . . , pk}
of {1, . . . , n}

|Fixa(p1, . . . , pk)| =
k∑

i=1

∑
(c1,...,ci)∈C(k,i,a)

(
b

i

)
(a)2c1
c1!
· · ·

(a)2ci

ci!
(n− k)!

We’ll prove this in a moment. For brevity, let Rk :=
k∑

i=1

∑
(c1,...,ci)∈C(k,i,a)

(
b

i

)
(a)2c1
c1!
· · ·

(a)2ci

ci!
.

(When k = 0 we take R0 = 1 since it is an empty sum.) Then by (**) and this proposition,
we have:

|Dn,a| =
n∑

k=0

(−1)k Rk (n− k)!

|Dn,a|
n!

=
n∑

k=0

(−1)k Rk

(n)k

So, we have an answer to our Generalized Secret Santa problem provided we can reasonably
work with the numbers Rk. Notice that when a = 1 we’re back in the Original Secret Santa
setting. In this case, b = n and C(k, i, 1) = ∅ unless i = k, in which case C(k, k, 1) =
{(1, 1, . . . , 1)}. Then Rk =

(
n
k

)
.

Proof of the proposition We group the subsets {p1, . . . , pk} according to their “composition
type.” By this we mean: Let i be the number of different a-blocks containing the elements
{p1, . . . , pk}, which we will denote Br1 , . . . , Bri . For 1 ≤ j ≤ i, let

cj := |Brj ∩ {p1, . . . , pk}|,

the number of elements from {p1, . . . , pk} that are in a-block Brj . Notice that c := (c1, . . . , ci)
is a composition of k and that each part is no larger than a. We will say {p1, . . . , pk} has
composition type c.
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Generalized Secret Santa, continued

Proof, continued If we fix a composition c = (c1, . . . , ci) in C(k, i, a) and on the left-hand side
of the following identity sum over all subsets {p1, . . . , pk} of composition type c then∑

|Fixa(p1, . . . , pk)| =
(

b

i

) (
a

c1

)
(a)c1

(
a

c2

)
(a)c2 · · ·

(
a

ci

)
(a)ci (n− k)!

To see this, we have
(
b
i

)
counting the number of ways to choose i a-blocks Br1 , . . . , Bri from

among the blocks B1, . . . , Bb. To understand the quantity
(

a
c1

)
(a)c1 , we choose c1 a-fixed

elements from among the elements in the a-block Br1 (there are
(

a
c1

)
such choices), and we

have (a)c1 choices for where these c1 elements get sent by a permutation which a-fixes them.
We can similarly understand the quantities

(
a
cj

)
(a)cj for all 1 ≤ j ≤ i. Finally there are

(n− k)! ways to freely assign the remaining n− k elements of {1, . . . , n}. To finish the proof,
check that (

a

cj

)
(a)cj =

(a)2cj

cj !

An interpretation of the numbers Rk The topic of permutations avoiding certain patterns is
well-studied, so it was natural at some point to consult Enumerative Combinatorics, Vol. I
by the eminent Richard Stanley. There I was reminded of something called “Rook Theory”
which leads to the following interpretation of the numbers Rk.

Color b square a × a regions along the “main diagonal” of an n × n chess board. Then Rk

(for 0 ≤ k ≤ n) counts the number of ways of placing k non-attacking rooks on the colored
regions. The proof of this is entirely similar to our proof of the above proposition.

This particular generalization of the Secret Santa Problem was not in Stanley’s text, and I
wonder what is known about it. Can we take the absence of a nice closed formula for our
Rk’s in his book as evidence of the non-existence of such a formula?

Answering the original question Using the above formula for Rk, I calculated R0, R1, R2, R3,
R4, R5, and R6 by hand (with the aid of a hand-held calculator). Here’s what I got:

R0 R1 R2 R3 R4 R5 R6

1 208 20, 904 1, 352, 416 63, 317, 176 2, 286, 355, 968 66, 274, 500, 864

Performing these calculations by hand was time-intensive. One part of the exercise was to
generate all compositions of k (for 1 ≤ k ≤ 6) with no part larger than a = 4. Also, the
numbers seemed to be getting prohibitively large fairly quickly, which made me pessimistic
about being able to follow through with the calculations even if they were automated in
maple. It is also instructive to use partial sums

∑K
k=0(−1)k Rk

(n)k
to approximate |Dn,a|

n! =∑n
k=0(−1)k Rk

(n)k
. I did this by hand for K = 0, 1, 2, 3, 4, 5, and 6. It was clear that this was

not converging very quickly to the desired probability:

K 0 1 2 3 4 5 6
Partial sum 1 −3 4.882353 −5.316863 4.428139 −2.902857 −0.731986
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Generalized Secret Santa, continued

Answering the original question, continued At this point I wrote a maple program that
would take as input n, a, b, and an upper limit value K for the approximating partial sum. I
checked the veractiy of the program by confirming the above data from the calculations I had
performed by hand and also by making sure the program returned the correct result for the
case we know: the Original Secret Santa Problem where a = 1. Everything checked out OK.
Here’s what the program returned for n = 52, a = 4, b = 13, and K values from 0 through
19:

K 0 1 2 3 4 5 6
Time — — — — — — —

Memory — — — — — — —
Partial sum 1 −3 4.882353 −5.316863 4.428139 −2.902857 1.618489

K 7 8 9 10 11 12 13
Time — — — — 1 sec 2 sec 5 sec

Memory — — — — — — —
Partial sum −0.731986 0.319012 −0.091439 0.050252 0.006599 0.018696 0.015661

K 14 15 16 17 18 19
Time 10 sec 31 sec 112 sec 494 sec 2551 sec NA

Memory 2 meg 3.25 meg 6.75 meg 18.6 meg 50.8 meg Out of memory

Partial sum 0.01635395 0.01620917 0.01623693 0.01623203 0.01623283 —

It appears that approximately 1.623% is the probability of dealing 52 cards in a row without
an “Ace” among the first four cards, a “2” among the next four cards, etc.

We devised a maple simulation to shuffle and deal 10,000 times, i.e. generate 10,000 random
permutations of the set {1, 2, . . . , 52}. Of these, 156, or 1.56%, were 4-derangements of
{1, 2, . . . , 52}.

Questions about this approach

First, is an explicit closed formula for the “rook numbers” Rk available?

Second, if not, is there a more efficient way to calculate these numbers (for example, by a
more straightforward recurrence than the one I use in my program)?

Third, in what sense do the partial sums “converge” to the correct probability? What can
be said concretely about the errors in the estimating partial sums?

Fourth, can we say whether the absolute values of the terms of the partial sum are eventually
decreasing?

Fifth, what about asymptotic considerations? What happens as b→∞? (When a = 1, then
as b→∞ we have the probability converging to 1

e .) Is there a limit? Is the limit an irrational
number? A transcendental number?
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