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Here’s what I hope was accomplished in two prior talks:

e We defined a Lie algebra as a vector space g over a ground field F (for us, R or C) equipped with a
bilinear, anticommutative, “Jacobi-associative” multiplication operation [,]:g x g — g.

e We looked at many families of matrix Lie algebras, including the following;:
1. The general linear Lie algebras gl(n,F) and gl(V):
gl(n,F) = {n x n matrices A over F}, where [A, B] := AB — BA
gl(V) := {linear transformations T': V' — V'}, where [S,T] := ST — TS,

where V' is a vector space over the ground field F.

2. The special linear Lie algebra sl(n,F) (a Lie subalgebra of gl(n,F)):
sl(n,F) = {n x n matrices A over F with trace(A4) = 0}
3. The orthogonal Lie algebra so(n,F) (a Lie subalgebra of gl(n,F)):
s0(n,F) = {4 € gl(n,F) | A is skew-symmetric}
4. The special unitary Lie algebra su,, = su(n,C) (a real Lie subalgebra of gl(n,C)):
su(n,C) = {A € gl(n,C), | A is skew-Hermitian}
We saw that su(2,C) ~ (R?, x).

e We considered a class of complex Lie algebras defined by generators and relations, the Kac-Moody Lie
algebras. We start with a “GCM graph” (T', A), where T is a finite simple graph and the matrix A is a
“Generalized Cartan Matrix,” a sort of adjacency matrix for the graph I'. There are three generators
(which span a subalgebra isomorphic to s[(2,C)) attached to each node of the graph I'. The relations

are determined by the the GCM graph — particularly the “intertwining” and “finiteness” relations —

as illustrated in some examples below.

e In my talk at the Kentucky MAA meeting, I discussed a game played on GCM graphs and answered a
finiteness question about this game. The answer is a classification by Dynkin diagrams, and leads to
a classification of finite-dimensional Kac-Moody Lie algebras and finite Weyl groups. We will assume
the following related result in this talk:

Classification of Simple Lie Algebras (Cartan, Serre, Kac etc) The finite-dimensional simple
Lie algebras are precisely the finite-dimensional Kac-Moody Lie algebras g(I', A) whose GCM graphs
are connected Dynkin diagrams from our irredundant list.

From generators and relations to concrete realizations:

For the one-node GCM graph A; we have the Lie algebra

g(Al) = (m,y,h [x,y] = h’ [h,l‘] = 23:? [hay] = _2y>




As discussed last time, the Lie algebra homomorphism g(A4;) 2, s[(2,C) induced by

(0 1) <0 0> (1 o)
€T — Y h—
0 0 10 0 —1

yields an isomorphism of Lie algebras, so g(A;) =~ s[(2,C).

For the two node GCM graph As =

8(Az) = (1,y1, h1, 22, Y2, ha | “Serre” relations ),

we have the Lie algebra

where the Serre relations in this case are:

“s[(2,C)” relations: [z1,y1] = h1, [h1,x1] = 221, [h1, 1] = —2y1,
[x2,y2] = ha, [h2,x2] = 222, [he, y2] = —2ys.

“Commuting” relations: [hi, h2] =0, [x1,y2] =0, [z2,y1] = 0.
“Intertwining” relations: [h1,x2] = —z2, [h1,y2] = Y2, [he,z1] = —z1, [he,y1] = 01
“Finiteness” relations: [z1, [z1, 22]] = [22, [v2, z1]] = [y1, [y1, v2]] = [y2, [y2, 1] = 0.

Consider the Lie algebra homomorphism g(A4s) 2, g[(3,C) induced by

01 0 0 0 0 1 0 0
ry— ] 0 0 0 y1— 1] 1 0 0 hi— | 0 -1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 00 0
x2— | 0 0 1 y2—~1 0 0 O ha—1 0 1 0
0 0 0 010 00 -1

To confirm that this indeed induces a Lie algebra homomorphism, check that the image matrices preserve
the above relations. Since the image matrices all have trace zero, then im(¢) C sl(3,C). In fact, in a prior
talk we saw that these matrices generate all of s1(3,C), so im(¢) = s[(3,C). By the Classification of simple
Lie algebras, since g(As) is simple, then ¢ is injective, and therefore g(As) = s1(3, C).

’ In a similar way, g(A,) ~ sl(n + 1,C). ‘

For the two node GCM graph “By” =

write it this way) we have the Lie algebra

(this is the same as Cs, but for now we’ll

g(“B2”) = (x1,y1, h1, 2, y2, ha | “Serre” relations ),

where the Serre relations in this case are:

“s1(2,C)” relations: [x1,y1] = ha, [h1,x1] = 221, [h1,y1] = —2y1,
[z2,y2] = ha, [h2, 22] = 222, [ha,y2] = —2y2.

“Commuting” relations: [h1, h2] =0, [z1,y2] =0, [x2,y1] = 0.

“Intertwining” relations: [h1,x2] = —z2, [h1, Y2| = Y2, [he, 1] = —2z1, [h2,y1] = 211



“Finiteness” relations: [z1, [z1, z2]] = [z2, [z2, [x2, z1]]] = [y1, [y1, y2]] = Y2, [Y2, [y2, v1]]] = 0.

Consider the Lie algebra homomorphism g(“By”) 2, gl(5,C) induced by

01 0 00 0 00 0O 1 0 0 0 O
00 0 0O 10 0 00 0 -1 0 0 O
ry— ] 0 0 0 0 O y1— 1] 0 0 0 0 O hi—|] 0 0 0 0 O
0 0 0 01 0 00 0O 0 0 01 O
0 0 0 0O 0 00 1O 0 0 0 0 -1
00 0 0O 00 0 0O 000 0 O
00 2 00 00 0 0O 020 0 O
z2— | 0 0 0 1 O y—1 0 1 0 0 O hg—1]1 0 0 0 0 0
00 0 0O 00 2 00 0 00 =20
00 0 0O 00 0 0O 000 0 O

To confirm that this indeed induces a Lie algebra homomorphism, check that the image matrices preserve
the above relations. Since the image matrices all have trace zero, then im(¢) C sl(5,C). In fact, in a prior

talk we saw that these matrices generate all of gy, where

0o 0 0 0 1
0o 0 0 -1 0
M=[0 0 1 0 0
0 -1 0 0 O
1 0 0 0 O

is congruent to M = I over C. Then we have im(¢) = g =~ s0(5,C). By the Classification of simple Lie
algebras, since g(“Bsy”) is simple, then ¢ is injective, and therefore g(“By”) ~ s0(5, C).

’ In a similar way, g(B,,) =~ so(2n + 1,C). ‘

Example 4 | A combinatorial representation of g(A;) = sl(2, C):

Let 9B, := {subsets of {1,2,... ,n}} Let V = V[%B,] = spanc{vg ‘ S € B,}, a 2"-dimensional complex
vector space. Define linear transformations X, Y, and H on V as follows:

X(vg) = > vr
TeB,, TDS,|T\S|=1
Y(vg) = > UR
ReB,,RCS,|S\R|=1
H = [X,Y]

Claim 1: H(vs) = (2|S| — n)vs
Claim 2: [HX](vs) =2X(vg)
Claim 3: [HY](vg) = —2Y (vg)

So there is a Lie algebra homomorphism g(A4;) 2, gl(V) induced by z — X,y — Y, and h— H.



This can be visualized as follows: Regard 98,, to be a partially ordered set with respect to subset containment
“C,” that is, we have S C T for S,T € B, iff S is a subset of T' when we think of S and T as subsets of

{1,2,...,n}.

Below is a picture of B3 with respect to this partial ordering. In this graph, an edge connects a subset S of
{1,2,3} to a subset T (with S below T') if T'\ S is a single element from {1, 2, 3}.

{1, 2, 3}

{1, 2} {2, 3}

{1} {3}

0
The “Boolean Lattice” B3

We can view the action of g(A;) on B, in the following way: X takes the basis vector at a given vertex to
the sum of the basis vectors above the given vertex; Y takes the basis vector at a given vertex to the sum of
the basis vectors below the given vertex; and each basis vector is an eigenvector for H where the eigenvalue
is “twice the rank of the vertex minus the length of the poset.”

Representations and modules (i.e. Lie algebra actions):

e Although the following definitions work over arbitrary fields and vector spaces of any dimension, from

here on our focus will be on finite-dimensional complex representations.
e A representation of a Lie algebra g is a Lie algebra homomorphism
¢:g— g[(V) (Or g[(d, C) )7

where V is an C-vector space of dimension d. For z in g and v € V, write x.v := ¢(z)(v). Then:

(1) (ax+by)v = a(z.v)+bly.v)
(2) z.(av+bw) = a(z.v)+ blzw)
(3) [z, y]lv = zyv—yzv

forall z,y € g, a,b € C, and v,w € V.

e If V is an C-vector space of dimension d with an operation g x V' — V denoted (z,v) — z.v and
satisfying (1), (2), and (3) above, then we say V (together with the operation) is a g-module. In this
case define ¢ : g — gl(V) by the rule ¢(z)(v) = z.v for all z € g and v € V. Check that ¢ is a Lie
algebra homomorphism.



So we see that representations of g and g-modules are different language for the same phenomena.
We’ll use both in what follows.

e Suppose V and W are g-modules. Then we can create the following new g-modules:

— V@ W is a g-module via z.(v,w) := (z.v,2.w).
(ve®

— V@ W is a g-module via z.(v ® w) := (z.v) ® w + v ® (x.w) (for simple tensors).
— V* is a g-module via (z.f)(v) := —f(z.v), where f : V — F is a linear functional in the dual
space V'*.

e Suppose V' is a g-module, and suppose W is a subspace of V' such that z.w € W for all z € g and
w € W. Then we say that W is a g-stable subspace of V.

The g-module V is irreducible if V has no g-stable subspaces other than {0} and V.

The g-module V' is completely irreducible if for any g-stable subspace W of V there is a g-stable
subspace W’ of V so that V=W HW'.

e We say V and W are isomorphic g-modules if there is a linear transformation ¢ : V. — W such that
Y(xzw) =z4p(v) forallz € gand all v € V.

Complex semisimple Lie algebras:

From here on our Lie algebras are complex. Continue with the assumption that representations are complex

and finite-dimensional.
We say a Lie algebra g is semisimple &4 g~ g1 DB gk, where each g; is simple.

Observation Let g be semisimple, and let ¢ : g — gl(V') be a representation of g. Then ¢(g) C sl(V) (i.e.

the image of g is a collection of trace zero endomorphisms).

Proof. If g is simple then [g,g] = g. Now check that if g is semisimple, then [g,g] = g. If z € g, then
z =) cilzi, yi]. Then ¢(2) =3 ci(d(2i)(yi) — ¢(yi)d(z:) ), and hence trace(¢d(z)) = 0. L]

The following comments are intended to suggest why it is reasonable in studying Lie algebra representations

to restrict our attention to semisimple Lie algebras.

We say a Lie algebra g is solvable £ the following sequence of subspaces is eventually the zero subspace:
g® =g g = g,g], g® = [gV,gW],...,g® := [g~D, g~V etc. An abelian Lie algebra is solvable,
and so is the matrix subalgebra {A € gl(n,C) } A is upper triangular}.

Lie’s Theorem Suppose s is a solvable Lie algebra, and suppose ¢ : s — gl(V) is a representation of s
(V #0). Then there exists a common eigenvector for the actions of all the elements ¢(z) in ¢(s).

Notice what this says about irreducible modules for solvable Lie algebras: they are all one-dimensional.

Levi’s Theorem Given a Lie algebra g, there exists a semisimple Lie subalgebra g.s and a solvable Lie
subalgebra s such that g ~ gss ® s. Moreover, if V is an irreducible g-module, then V.~ W @ Vs (an
isomorphism of g-modules), where W is an irreducible gss-module, V; is a (one-dimensional) irreducible

s-module, the the action of gss on Vj is trivial, and the action of s on W is trivial.

Wey!’s Theorem (Complete Reducibility) Ifg is semisimple and V' is a g-module, then V' is completely

reducible. (Then V has a unique decomposition as a sum of irreducible g-modules.)



Representations of complex semisimple Lie algebras:

We let g = g(I', A) be a semisimple Lie algebra obtained by a generators-and-relations construction whose
starting point is a GCM graph (T', A) whose connected components are connected Dynkin diagrams. Fix a
numbering 1,2, ..., n of the nodes of I'. Let V' be a g-module of finite dimension d > 1. Then:

1. | Weight basis | There exists a basis for V' consisting of common eigenvectors with integer eigenvalues

for all ¢(h;)’s. That is, there is a basis {v1,...,v4} and integers m; ; such that h;.v; = m; jv; for all
1<i<n,1<j<d.

IDEA: Use basic s[(2, C) theory to obtain a basis of eigenvectors with integral eigenvalues for each ¢(h;).
Now the fact that the ¢(h;)’s commute implies that a basis of common eigenvectors exists.

DEFINITIONS: Such a basis for V' is called a weight basis. A weight vector is any vector in V' that is

an eigenvector for all ¢(h;)’s. The weight of a weight vector v is the n-tuple (my,...,m,) of integral

eigenvalues for which ¢(h;)(v) = m,v.

2. | Maximal vector‘ There is a weight vector v such that x;.v = 0 for all x;’'s. The weight of v is an

n-tuple of nonnegative integers.

IDEA: This follows from Lie’s theorem applied to ¢(s), where s is the solvable Lie subalgebra of g

generated by all of the z;’s and h;’s. That the eigenvalues are nonnegative follows from s((2, C) theory.

DEFINITION: Any such vector is called a maximal vector.

3. | Unique maximal vector < irreducible module‘ V' is irreducible if and only if there exists a unique

maximal vector v (unique up to scalar factors).
IDEA: Each maximal vector “generates” a subspace of V' that is stable under the action of g.

DEFINITION: If A = ()\;)1<i<pn is the weight of the maximal vector v, then we say the irreducible
g-module V' has highest weight .

4. Suppose V and W are irreducible g-modules with maximal vectors having the same
highest weight. Then V ~ W.

IDEA: Both modules are “cyclic” in the sense that they are generated by their maximal vectors. Since
these maximal vectors are identical in the way g acts on them, then the modules they generate should
be the same.

5. Suppose A = (\;)1<i<n is any n-tuple of nonnegative integers. Then there exists a finite-
dimensional irreducible g-module V' with highest weight .

IDEA: Such a g-module can be obtained by generators and relations: For a suitable ideal I(\) in U(g),
we have V = U(g)/I(\).

DEFINITION: A dominant weight is an n-tuple A = (\;)1<i<n of nonnegative integers.

Together #4 and #5 give a one-to-one correspondence between
irreducible modules and dominant weights.



