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Here’s what I hope was accomplished in two prior talks:

• We defined a Lie algebra as a vector space g over a ground field F (for us, R or C) equipped with a
bilinear, anticommutative, “Jacobi-associative” multiplication operation [ , ] : g× g → g.

• We looked at many families of matrix Lie algebras, including the following:

1. The general linear Lie algebras gl(n,F) and gl(V ):

gl(n,F) = {n× n matrices A over F}, where [A,B] := AB −BA

gl(V ) := {linear transformations T : V → V }, where [S, T ] := ST − TS,

where V is a vector space over the ground field F.

2. The special linear Lie algebra sl(n,F) (a Lie subalgebra of gl(n,F)):

sl(n,F) = {n× n matrices A over F with trace(A) = 0}

3. The orthogonal Lie algebra so(n,F) (a Lie subalgebra of gl(n,F)):

so(n,F) = {A ∈ gl(n,F)
∣∣A is skew-symmetric}

4. The special unitary Lie algebra sun = su(n,C) (a real Lie subalgebra of gl(n,C)):

su(n,C) = {A ∈ gl(n,C),
∣∣A is skew-Hermitian}

We saw that su(2,C) ≈ (R3,×).

• We considered a class of complex Lie algebras defined by generators and relations, the Kac-Moody Lie
algebras. We start with a “GCM graph” (Γ, A), where Γ is a finite simple graph and the matrix A is a
“Generalized Cartan Matrix,” a sort of adjacency matrix for the graph Γ. There are three generators
(which span a subalgebra isomorphic to sl(2,C)) attached to each node of the graph Γ. The relations
are determined by the the GCM graph — particularly the “intertwining” and “finiteness” relations —
as illustrated in some examples below.

• In my talk at the Kentucky MAA meeting, I discussed a game played on GCM graphs and answered a
finiteness question about this game. The answer is a classification by Dynkin diagrams, and leads to
a classification of finite-dimensional Kac-Moody Lie algebras and finite Weyl groups. We will assume
the following related result in this talk:

Classification of Simple Lie Algebras (Cartan, Serre, Kac etc) The finite-dimensional simple

Lie algebras are precisely the finite-dimensional Kac-Moody Lie algebras g(Γ, A) whose GCM graphs

are connected Dynkin diagrams from our irredundant list.

From generators and relations to concrete realizations:

Example 1 For the one-node GCM graph A1 we have the Lie algebra

g(A1) = 〈x, y, h
∣∣∣ [x, y] = h, [h, x] = 2x, [h, y] = −2y〉
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As discussed last time, the Lie algebra homomorphism g(A1)
φ−→ sl(2,C) induced by

x 7→

(
0 1
0 0

)
y 7→

(
0 0
1 0

)
h 7→

(
1 0
0 −1

)

yields an isomorphism of Lie algebras, so g(A1) ≈ sl(2,C).

Example 2 For the two node GCM graph A2 = r r- � we have the Lie algebra

g(A2) = 〈x1, y1, h1, x2, y2, h2

∣∣∣ “Serre” relations 〉,

where the Serre relations in this case are:

“sl(2, C)” relations: [x1, y1] = h1, [h1, x1] = 2x1, [h1, y1] = −2y1,

[x2, y2] = h2, [h2, x2] = 2x2, [h2, y2] = −2y2.

“Commuting” relations: [h1, h2] = 0, [x1, y2] = 0, [x2, y1] = 0.

“Intertwining” relations: [h1, x2] = −x2, [h1, y2] = y2, [h2, x1] = −x1, [h2, y1] = y1

“Finiteness” relations: [x1, [x1, x2]] = [x2, [x2, x1]] = [y1, [y1, y2]] = [y2, [y2, y1]] = 0.

Consider the Lie algebra homomorphism g(A2)
φ−→ gl(3,C) induced by

x1 7→

 0 1 0
0 0 0
0 0 0

 y1 7→

 0 0 0
1 0 0
0 0 0

 h1 7→

 1 0 0
0 −1 0
0 0 0



x2 7→

 0 0 0
0 0 1
0 0 0

 y2 7→

 0 0 0
0 0 0
0 1 0

 h2 7→

 0 0 0
0 1 0
0 0 −1


To confirm that this indeed induces a Lie algebra homomorphism, check that the image matrices preserve
the above relations. Since the image matrices all have trace zero, then im(φ) ⊆ sl(3,C). In fact, in a prior
talk we saw that these matrices generate all of sl(3,C), so im(φ) = sl(3,C). By the Classification of simple
Lie algebras, since g(A2) is simple, then φ is injective, and therefore g(A2) ≈ sl(3,C).

In a similar way, g(An) ≈ sl(n+ 1,C).

Example 3 For the two node GCM graph “B2” = r r-- � (this is the same as C2, but for now we’ll
write it this way) we have the Lie algebra

g(“B2”) = 〈x1, y1, h1, x2, y2, h2

∣∣∣ “Serre” relations 〉,

where the Serre relations in this case are:

“sl(2, C)” relations: [x1, y1] = h1, [h1, x1] = 2x1, [h1, y1] = −2y1,

[x2, y2] = h2, [h2, x2] = 2x2, [h2, y2] = −2y2.

“Commuting” relations: [h1, h2] = 0, [x1, y2] = 0, [x2, y1] = 0.

“Intertwining” relations: [h1, x2] = −x2, [h1, y2] = y2, [h2, x1] = −2x1, [h2, y1] = 2y1

2



“Finiteness” relations: [x1, [x1, x2]] = [x2, [x2, [x2, x1]]] = [y1, [y1, y2]] = [y2, [y2, [y2, y1]]] = 0.

Consider the Lie algebra homomorphism g(“B2”)
φ−→ gl(5,C) induced by

x1 7→


0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 y1 7→


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

 h1 7→


1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1



x2 7→


0 0 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 y2 7→


0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 2 0 0
0 0 0 0 0

 h2 7→


0 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 −2 0
0 0 0 0 0


To confirm that this indeed induces a Lie algebra homomorphism, check that the image matrices preserve
the above relations. Since the image matrices all have trace zero, then im(φ) ⊆ sl(5,C). In fact, in a prior
talk we saw that these matrices generate all of gM ′ , where

M ′ =


0 0 0 0 1
0 0 0 −1 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0


is congruent to M = I over C. Then we have im(φ) = gM ′ ≈ so(5,C). By the Classification of simple Lie
algebras, since g(“B2”) is simple, then φ is injective, and therefore g(“B2”) ≈ so(5,C).

In a similar way, g(Bn) ≈ so(2n+ 1,C).

Example 4 A combinatorial representation of g(A1) ≈ sl(2,C):

Let Bn :=
{

subsets of {1, 2, . . . , n}
}

. Let V = V [Bn] = spanC{vS

∣∣S ∈ Bn}, a 2n-dimensional complex
vector space. Define linear transformations X, Y , and H on V as follows:

X(vS) :=
∑

T∈Bn,T⊇S,|T\S|=1

vT

Y (vS) :=
∑

R∈Bn,R⊆S,|S\R|=1

vR

H := [X,Y ]

Claim 1: H(vS) = (2|S| − n)vS

Claim 2: [HX](vS) = 2X(vS)

Claim 3: [HY ](vS) = −2Y (vS)

So there is a Lie algebra homomorphism g(A1)
φ−→ gl(V ) induced by x 7→ X, y 7→ Y , and h 7→ H.
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This can be visualized as follows: Regard Bn to be a partially ordered set with respect to subset containment
“⊆,” that is, we have S ⊆ T for S, T ∈ Bn iff S is a subset of T when we think of S and T as subsets of
{1, 2, . . . , n}.

Below is a picture of B3 with respect to this partial ordering. In this graph, an edge connects a subset S of
{1, 2, 3} to a subset T (with S below T ) if T \ S is a single element from {1, 2, 3}.
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The “Boolean Lattice” B3

We can view the action of g(A1) on Bn in the following way: X takes the basis vector at a given vertex to
the sum of the basis vectors above the given vertex; Y takes the basis vector at a given vertex to the sum of
the basis vectors below the given vertex; and each basis vector is an eigenvector for H where the eigenvalue
is “twice the rank of the vertex minus the length of the poset.”

Representations and modules (i.e. Lie algebra actions):

• Although the following definitions work over arbitrary fields and vector spaces of any dimension, from
here on our focus will be on finite-dimensional complex representations.

• A representation of a Lie algebra g is a Lie algebra homomorphism

φ : g −→ gl(V ) (or gl(d,C) ),

where V is an C-vector space of dimension d. For x in g and v ∈ V , write x.v := φ(x)(v). Then:

(1) (ax+ by).v = a(x.v) + b(y.v)
(2) x.(av + bw) = a(x.v) + b(x.w)
(3) [x, y].v = x.y.v − y.x.v

for all x, y ∈ g, a, b ∈ C, and v, w ∈ V .

• If V is an C-vector space of dimension d with an operation g × V → V denoted (x, v) 7→ x.v and
satisfying (1), (2), and (3) above, then we say V (together with the operation) is a g-module. In this
case define φ : g → gl(V ) by the rule φ(x)(v) = x.v for all x ∈ g and v ∈ V . Check that φ is a Lie
algebra homomorphism.
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So we see that representations of g and g-modules are different language for the same phenomena.
We’ll use both in what follows.

• Suppose V and W are g-modules. Then we can create the following new g-modules:

– V
⊕
W is a g-module via x.(v, w) := (x.v, x.w).

– V
⊗
W is a g-module via x.(v ⊗ w) := (x.v)⊗ w + v ⊗ (x.w) (for simple tensors).

– V ∗ is a g-module via (x.f)(v) := −f(x.v), where f : V → F is a linear functional in the dual
space V ∗.

• Suppose V is a g-module, and suppose W is a subspace of V such that x.w ∈ W for all x ∈ g and
w ∈W . Then we say that W is a g-stable subspace of V .

The g-module V is irreducible if V has no g-stable subspaces other than {0} and V .

The g-module V is completely irreducible if for any g-stable subspace W of V there is a g-stable
subspace W ′ of V so that V = W

⊕
W ′.

• We say V and W are isomorphic g-modules if there is a linear transformation ψ : V → W such that
ψ(x.v) = x.ψ(v) for all x ∈ g and all v ∈ V .

Complex semisimple Lie algebras:

From here on our Lie algebras are complex. Continue with the assumption that representations are complex
and finite-dimensional.

We say a Lie algebra g is semisimple
(def)⇐⇒ g ≈ g1 ⊕ · · · ⊕ gk, where each gi is simple.

Observation Let g be semisimple, and let φ : g → gl(V ) be a representation of g. Then φ(g) ⊆ sl(V ) (i.e.

the image of g is a collection of trace zero endomorphisms).

Proof. If g is simple then [g, g] = g. Now check that if g is semisimple, then [g, g] = g. If z ∈ g, then
z =

∑
ci[xi, yi]. Then φ(z) =

∑
ci(φ(xi)φ(yi)− φ(yi)φ(xi) ), and hence trace(φ(z)) = 0.

The following comments are intended to suggest why it is reasonable in studying Lie algebra representations
to restrict our attention to semisimple Lie algebras.

We say a Lie algebra g is solvable
(def)⇐⇒ the following sequence of subspaces is eventually the zero subspace:

g(0) := g, g(1) := [g, g], g(2) := [g(1), g(1)], . . . , g(i) := [g(i−1), g(i−1)], etc. An abelian Lie algebra is solvable,
and so is the matrix subalgebra {A ∈ gl(n,C)

∣∣A is upper triangular}.

Lie’s Theorem Suppose s is a solvable Lie algebra, and suppose φ : s → gl(V ) is a representation of s

(V 6= 0). Then there exists a common eigenvector for the actions of all the elements φ(x) in φ(s).

Notice what this says about irreducible modules for solvable Lie algebras: they are all one-dimensional.

Levi’s Theorem Given a Lie algebra g, there exists a semisimple Lie subalgebra gss and a solvable Lie

subalgebra s such that g ≈ gss ⊕ s. Moreover, if V is an irreducible g-module, then V ≈ W
⊗
V0 (an

isomorphism of g-modules), where W is an irreducible gss-module, V0 is a (one-dimensional) irreducible

s-module, the the action of gss on V0 is trivial, and the action of s on W is trivial.

Weyl’s Theorem (Complete Reducibility) If g is semisimple and V is a g-module, then V is completely

reducible. (Then V has a unique decomposition as a sum of irreducible g-modules.)
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Representations of complex semisimple Lie algebras:

We let g = g(Γ, A) be a semisimple Lie algebra obtained by a generators-and-relations construction whose
starting point is a GCM graph (Γ, A) whose connected components are connected Dynkin diagrams. Fix a
numbering 1, 2, . . . , n of the nodes of Γ. Let V be a g-module of finite dimension d ≥ 1. Then:

1. Weight basis There exists a basis for V consisting of common eigenvectors with integer eigenvalues
for all φ(hi)’s. That is, there is a basis {v1, . . . , vd} and integers mi,j such that hi.vj = mi,jvj for all
1 ≤ i ≤ n, 1 ≤ j ≤ d.

idea: Use basic sl(2,C) theory to obtain a basis of eigenvectors with integral eigenvalues for each φ(hi).
Now the fact that the φ(hi)’s commute implies that a basis of common eigenvectors exists.

definitions: Such a basis for V is called a weight basis. A weight vector is any vector in V that is
an eigenvector for all φ(hi)’s. The weight of a weight vector v is the n-tuple (m1, . . . ,mn) of integral
eigenvalues for which φ(hi)(v) = miv.

2. Maximal vector There is a weight vector v such that xi.v = 0 for all xi’s. The weight of v is an
n-tuple of nonnegative integers.

idea: This follows from Lie’s theorem applied to φ(s), where s is the solvable Lie subalgebra of g

generated by all of the xi’s and hi’s. That the eigenvalues are nonnegative follows from sl(2,C) theory.

definition: Any such vector is called a maximal vector.

3. Unique maximal vector ↔ irreducible module V is irreducible if and only if there exists a unique
maximal vector v (unique up to scalar factors).

idea: Each maximal vector “generates” a subspace of V that is stable under the action of g.

definition: If λ = (λi)1≤i≤n is the weight of the maximal vector v, then we say the irreducible
g-module V has highest weight λ.

4. Uniqueness Suppose V and W are irreducible g-modules with maximal vectors having the same
highest weight. Then V ≈W .

idea: Both modules are “cyclic” in the sense that they are generated by their maximal vectors. Since
these maximal vectors are identical in the way g acts on them, then the modules they generate should
be the same.

5. Existence Suppose λ = (λi)1≤i≤n is any n-tuple of nonnegative integers. Then there exists a finite-
dimensional irreducible g-module V with highest weight λ.

idea: Such a g-module can be obtained by generators and relations: For a suitable ideal I(λ) in U(g),
we have V ≈ U(g)/I(λ).

definition: A dominant weight is an n-tuple λ = (λi)1≤i≤n of nonnegative integers.

Together #4 and #5 give a one-to-one correspondence between
irreducible modules and dominant weights.
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